Skip to main content

Cognitive Computing (Perception, Learning, Reasoning)

 

                    Cognitive Computing 

            (Perception, Learning, Reasoning)


AI is at the forefront of a new era of computing, Cognitive Computing. It's a radically new kind of computing, very different from the programmable systems that preceded it, as different as those systems were from the tabulating machines of a century ago. 


Conventional computing solutions, based on the mathematical principles that emanate from the 1940's, are programmed based on rules and logic intended to derive mathematically precise answers, often following a rigid decision tree approach. But with today's wealth of big data and the need for more complex evidence-based decisions, such a rigid approach often breaks or fails to keep up with available information. Cognitive Computing enables people to create a profoundly new kind of value, finding answers and insights locked away in volumes of data. Whether we consider a doctor diagnosing a patient, a wealth manager advising a client on their retirement portfolio, or even a chef creating a new recipe, they need new approaches to put into context the volume of information they deal with on a daily basis in order to derive value from it. These processes serve to enhance human expertise. 


Cognitive Computing mirrors some of the key cognitive elements of human expertise, systems that reason about problems like a human does. When we as humans seek to understand something and to make a decision, we go through four key steps. 


First, we observe visible phenomena and bodies of evidence. 


Second, we draw on what we know to interpret what we are seeing to generate hypotheses about what it means. 


Third, we evaluate which hypotheses are right or wrong. 


Finally, we decide, choosing the option that seems best and acting accordingly. Just as humans become experts by going through the process of observation, evaluation, and decision-making, cognitive systems use similar processes to reason about the information they read, and they can do this at massive speed and scale. 


Unlike conventional computing solutions, which can only handle neatly organized structured data such as what is stored in a database, cognitive computing solutions can understand unstructured data, which is 80 percent of data today. All of the information that is produced primarily by humans for other humans to consume. This includes everything from literature, articles, research reports to blogs, posts, and tweets. While structured data is governed by well-defined fields that contain well-specified information, cognitive systems rely on natural language, which is governed by rules of grammar, context, and culture. It is implicit, ambiguous, complex, and a challenge to process. While all human language is difficult to parse, certain idioms can be particularly challenging. In English for instance, we can feel blue because it's raining cats and dogs, while we're filling in a form, someone asked us to fill out. Cognitive systems read and interpret text like a person. They do this by breaking down a sentence grammatically, relationally, and structurally, discerning meaning from the semantics of the written material. 



Cognitive systems understand context. This is very different from simple speech recognition, which is how a computer translates human speech into a set of words. Cognitive systems try to understand the real intent of the users language and use that understanding to draw inferences through a broad array of linguistic models and algorithms. Cognitive systems learn, adapt, and keep getting smarter. They do this by learning from their interactions with us, and from their own successes and failures, just like humans do.


Avinash C. Pillai

Technology Director

syniverse® 

The world’s most connected company™ 

Website / Twitter / LinkedIn/ connected company™  


Comments

Popular posts from this blog

Seven Personal Qualities Found In A Good Leader

Whether in fact a person is born a leader or develops skills and abilities to become a leader is open for debate. There are some clear characteristics that are found in good leaders. These qualities can be developed or may be naturally part of their personality. Let us explore them further. Seven Personal Qualities Found In A Good Leader: 1. A good leader has an exemplary character. It is of utmost importance that a leader is trustworthy to lead others. A leader needs to be trusted and be known to live their life with honestly and integrity. A good leader “walks the talk” and in doing so earns the right to have responsibility for others. True authority is born from respect for the good character and trustworthiness of the person who leads.   2.A good leader is enthusiastic about their work or cause and also about their role as leader. People will respond more openly to a person of passion and dedication. Leaders need to be able to be a source of inspiration, and b...

Defining AI Ethics

                           Defining AI Ethics Welcome to Defining AI Ethics. Humans rely on culturally agreed-upon morals and standards of action — or ethics — to guide their decision-making, especially for decisions that impact others. As AI is increasingly used to automate and augment decision-making, it is critical that AI is built with ethics at the core so its outcomes align with human ethics and expectations. AI ethics is a multidisciplinary field that investigates how to maximize AI's beneficial impacts while reducing risks and adverse impacts. It explores issues like data responsibility and privacy, inclusion, moral agency, value alignment, accountability, and technology misuse …to understand how to build and use AI in ways that align with human ethics and expectations.  There are five pillars for AI ethics: explainability, fairness,...

Command to Find Version of Linux OS

Command to Find Version of Linux OS # cat /etc/redhat-release Regards Avinash Pillai URL : http://avinashpillai.blogspot.com Email: avinashp[AT]aztecsoft[DOT]com, avinashp25[AT]gmail[DOT]com